11,683 research outputs found

    Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites

    Get PDF
    This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201
    corecore